Tag Archives: motor pinion gear

China factory Custom Precision Machining Nylon Small Brass Aluminum Rack And Pinion CNC Plastic Planetary Gear Milling Parts Works worm gear motor

Condition: New
Warranty: Unavailable
Shape: Spur
Applicable Industries: Hotels, Garment Shops, Building Material Shops, Manufacturing Plant, Machinery Repair Shops, Food & Beverage Factory, Farms, Restaurant, Home Use, Retail, Food Shop, Printing Shops, Construction works , Energy & Mining, Food & Beverage Shops, Other, Advertising Company
Weight (KG): 0.1
Showroom Location: Canada, Turkey, United Kingdom, France, Germany, Viet Nam, Philippines, Saudi Arabia, Russia
Video outgoing-inspection: Provided
Machinery Test Report: Provided
Marketing Type: New Product 2571
Warranty of core components: Not Available
Core Components: PLC, Engine, Bearing, Gearbox, Motor, Gear, Pump
Material: Plastic, plastic
keywords: Plastic Planetary Gear
Process: cnc machining
Product name: Small Planetary Plastic Gear
Surface treatment: customized color
Name: Planetary Plastic Gear
Service: Customized OEM
Item: Pinion Small Planetary Plastic Gear
Equipment: CNC Machining Centres
MOQ: 10pc
Packaging Details: Custom Precision Machining Nylon Small Brass Aluminum Rack And Pinion CNC Plastic Planetary Gear Milling Parts WorksThe carton for outer packing the inner packaging according to customer’s requirement
Port: HangZhou

Our Service

High Quality CNC OEM Machining Supplier
ServiceCNC Turning, CNC Milling, Laser Cutting, Chinese portable oil-free small 40L 1.2hp2 double cylinder electric piston air compressor silent 220v Bending, Spinning, Wire Cutting, Stamping, Electric Discharge Machining (EDM), Injection Molding
MaterialsAluminum: 2000 series, 6000 series, 7075, 5052, etc.
Stainless steel: SUS303, SUS304, SS316, SS316L, 17-4PH, etc.
Steel: 1214L/1215/1045/4140/SCM440/40CrMo, etc.
Brass: 260, C360, H59, H60, H62, H63, H65, H68, H70, Bronze, Copper
Titanium: GradeF1-F5
Plastic: Acetal/POM/PA/Nylon/PC/PMMA/PVC/PU/Acrylic/ABS/PTFE/PEEK etc.
Surface TreatmentAnodize, Bead blasted, Silk Screen, PVD Plating, Zinc/Nickel/Chrome/Titanium Plating, Brushing, Painting, Powder Coated, Passivation, Manufacturer provides straightly 608pet plastic bearing equipment bearing plastic coated pom nylon bearing gyro toys Electrophoresis, Electro Polishing, Knurl, Laser/Etch/Engrave etc.
Tolerance+/-0.002~+/-0.005mm
Surface Roughness Min Ra0.1~3.2
Drawing AcceptedStp, Step, Igs, Xt, AutoCAD(DXF, DWG), PDF, or Samples
Lead Time1-2 weeks for samples, 3-4 weeks for mass production
Quality AssuranceISO9001:2015, ISO13485:2016, SGS, RoHs, TUV
Payment TermsTrade Assurance, TT/ PayPal/ WestUnion
Customer Review Factory Show Company IntroductionWelcome to know more about 7 Swords. 1.3000 square CZPT factory mainly provides CNC machining service. 2.ISO certificated,supports third-party verification. 3.Deliver conventional products in 15 days at the soonest. 4.Engineering service provided.Send Inquiry>>> Certifications Quality Control Process Flow Product Packaging Our Team FAQ 1.Are you a manufacturer or a trading company?We are a 3000-square-meter factory located in HangZhou, China.2.How can I get a quote?Detailed drawings (PDF/STEP/IGS/DWG…) with material, quantity and surface treatment information.3. Can I get a quote without drawings?Sure, we appreciate to receive your samples, pictures or drafts with detailed dimensions for accurate quotation.4.Will my drawings be divulged if you benefit?No, we pay much attention to protect our customers’ privacy of drawings, signing NDA is also accepted if need.5. Can you provide samples before mass production?Sure, sample fee is needed, will be returned when mass production if possible.6. How about the lead time?Generally, 1-2 weeks for samples, 3-4 weeks for mass production.7. How do you control the quality?(1) Material inspection–Check the material surface and roughly dimension.(2) Production first inspection–To ensure the critical dimension in mass production.(3) Sampling inspection–Check the quality before sending to the warehouse.(4) Pre-shipment inspection–100% inspected by QC assistants before shipment.8. What will you do if we receive poor quality parts?Please kindly send us the pictures, our engineers will find the solutions and remake them for you asap.Back to homepage>> Expansion Screws Fixed Duplex Bearing Silent Steel Nylon Pulley >

gear

Benefits and Uses of Miter Gears

If you’ve ever looked into the differences between miter gears, you’re probably wondering how to choose between a Straight toothed and Hypoid one. Before you decide, however, make sure you know about backlash and what it means. Backlash is the difference between the addendum and dedendum, and it prevents jamming of the gears, protects the mating gear surfaces, and allows for thermal expansion during operation.

Spiral bevel gears

Spiral bevel gears are designed to increase efficiency and reduce cost. The spiral shape creates a profile in which the teeth are cut with a slight curve along their length, making them an excellent choice for heavy-duty applications. Spiral bevel gears are also hypoid gears, with no offsets. Their smaller size means that they are more compact than other types of right-angle gears, and they are much quieter than other types of gear.
Spiral bevel gears feature helical teeth arranged in a 90-degree angle. The design features a slight curve to the teeth, which reduces backlash while increasing flexibility. Because they have no offsets, they won’t slip during operation. Spiral bevel gears also have less backlash, making them an excellent choice for high-speed applications. They are also carefully spaced to distribute lubricant over a larger area. They are also very accurate and have a locknut design that prevents them from moving out of alignment.
In addition to the geometric design of bevel gears, CZPT can produce 3D models of spiral bevel gears. This software has gained widespread attention from many companies around the world. In fact, CZPT, a major manufacturer of 5-axis milling machines, recently machined a prototype using a spiral bevel gear model. These results prove that spiral bevel gears can be used in a variety of applications, ranging from precision machining to industrial automation.
Spiral bevel gears are also commonly known as hypoid gears. Hypoid gears differ from spiral bevel gears in that their pitch surface is not at the center of the meshing gear. The benefit of this gear design is that it can handle large loads while maintaining its unique features. They also produce less heat than their bevel counterparts, which can affect the efficiency of nearby components.

Straight toothed miter gears

Miter gears are bevel gears that have a pitch angle of 90 degrees. Their gear ratio is 1:1. Miter gears come in straight and spiral tooth varieties and are available in both commercial and high precision grades. They are a versatile tool for any mechanical application. Below are some benefits and uses of miter gears. A simple explanation of the basic principle of this gear type is given. Read on for more details.
When selecting a miter gear, it is important to choose the right material. Hard faced, high carbon steel is appropriate for applications requiring high load, while nylon and injection molding resins are suitable for lower loads. If a particular gear becomes damaged, it’s advisable to replace the entire set, as they are closely linked in shape. The same goes for spiral-cut miter gears. These geared products should be replaced together for proper operation.
Straight bevel gears are the easiest to manufacture. The earliest method was using an indexing head on a planer. Modern manufacturing methods, such as the Revacycle and Coniflex systems, made the process more efficient. CZPT utilizes these newer manufacturing methods and patented them. However, the traditional straight bevel is still the most common and widely used type. It is the simplest to manufacture and is the cheapest type.
SDP/Si is a popular supplier of high-precision gears. The company produces custom miter gears, as well as standard bevel gears. They also offer black oxide and ground bore and tooth surfaces. These gears can be used for many industrial and mechanical applications. They are available in moderate quantities from stock and in partial sizes upon request. There are also different sizes available for specialized applications.
gear

Hypoid bevel gears

The advantages of using Hypoid bevel and helical gears are obvious. Their high speed, low noise, and long life make them ideal for use in motor vehicles. This type of gear is also becoming increasingly popular in the power transmission and motion control industries. Compared to standard bevel and helical gears, they have a higher capacity for torque and can handle high loads with less noise.
Geometrical dimensioning of bevel/hypoid bevel gears is essential to meet ANSI/AGMA/ISO standards. This article examines a few ways to dimension hypoid bevel and helical gears. First, it discusses the limitations of the common datum surface when dimensioning bevel/helical gear pairs. A straight line can’t be parallel to the flanks of both the gear and the pinion, which is necessary to determine “normal backlash.”
Second, hypoid and helical gears have the same angular pitch, which makes the manufacturing process easier. Hypoid bevel gears are usually made of two gears with equal angular pitches. Then, they are assembled to match one another. This reduces noise and vibration, and increases power density. It is recommended to follow the standard and avoid using gears that have mismatched angular pitches.
Third, hypoid and helical gears differ in the shape of the teeth. They are different from standard gears because the teeth are more elongated. They are similar in appearance to spiral bevel gears and worm gears, but differ in geometry. While helical gears are symmetrical, hypoid bevel gears are non-conical. As a result, they can produce higher gear ratios and torque.

Crown bevel gears

The geometrical design of bevel gears is extremely complex. The relative contact position and flank form deviations affect both the paired gear geometry and the tooth bearing. In addition, paired gears are also subject to process-linked deviations that affect the tooth bearing and backlash. These characteristics require the use of narrow tolerance fields to avoid quality issues and production costs. The relative position of a miter gear depends on the operating parameters, such as the load and speed.
When selecting a crown bevel gear for a miter-gear system, it is important to choose one with the right tooth shape. The teeth of a crown-bevel gear can differ greatly in shape. The radial pitch and diametral pitch cone angles are the most common. The tooth cone angle, or “zerol” angle, is the other important parameter. Crown bevel gears have a wide range of tooth pitches, from flat to spiral.
Crown bevel gears for miter gear are made of high-quality materials. In addition to metal, they can be made of plastic or pre-hardened alloys. The latter are preferred as the material is less expensive and more flexible than steel. Furthermore, crown bevel gears for miter gears are extremely durable, and can withstand extreme conditions. They are often used to replace existing gears that are damaged or worn.
When selecting a crown bevel gear for a miter gear, it is important to know how they relate to each other. This is because the crown bevel gears have a 1:1 speed ratio with a pinion. The same is true for miter gears. When comparing crown bevel gears for miter gears, be sure to understand the radii of the pinion and the ring on the pinion.
gear

Shaft angle requirements for miter gears

Miter gears are used to transmit motion between intersecting shafts at a right angle. Their tooth profile is shaped like the mitre hat worn by a Catholic bishop. Their pitch and number of teeth are also identical. Shaft angle requirements vary depending on the type of application. If the application is for power transmission, miter gears are often used in a differential arrangement. If you’re installing miter gears for power transmission, you should know the mounting angle requirements.
Shaft angle requirements for miter gears vary by design. The most common arrangement is perpendicular, but the axes can be angled to almost any angle. Miter gears are also known for their high precision and high strength. Their helix angles are less than ten degrees. Because the shaft angle requirements for miter gears vary, you should know which type of shaft angle you require before ordering.
To determine the right pitch cone angle, first determine the shaft of the gear you’re designing. This angle is called the pitch cone angle. The angle should be at least 90 degrees for the gear and the pinion. The shaft bearings must also be capable of bearing significant forces. Miter gears must be supported by bearings that can withstand significant forces. Shaft angle requirements for miter gears vary from application to application.
For industrial use, miter gears are usually made of plain carbon steel or alloy steel. Some materials are more durable than others and can withstand higher speeds. For commercial use, noise limitations may be important. The gears may be exposed to harsh environments or heavy machine loads. Some types of gears function with teeth missing. But be sure to know the shaft angle requirements for miter gears before you order one.

China factory Custom Precision Machining Nylon Small Brass Aluminum Rack And Pinion CNC Plastic Planetary Gear Milling Parts Works worm gear motorChina factory Custom Precision Machining Nylon Small Brass Aluminum Rack And Pinion CNC Plastic Planetary Gear Milling Parts Works worm gear motor
editor by Cx 2023-07-12

China 8HP YAMAHA Outboard Forward Gear 647-45560-00, Pinion 647-45551-00, Reverse Gear 647-45570-00 worm gear motor

Merchandise Description

We are looking ahead to work together with you and we hope to construct substantial cooperative romantic relationship with you, remember to do not wait to contact us.
 
 

Outboard model brand HONDA, SUZUKI, YAMAHA, MERCURY
Outboard element design nine.9HP,15HP,20HP,25HP,30HP,40HP,48HP,60HP,70HP,80HP,100HP

 

6E7/63V-45551-00 YAMAHA 15HP  PINION
6E7-45560-00 YAMAHA 15HP Forward Gear
6E7-45571-00 YAMAHA 15HP REVERSE Gear
3B2-64571- TOHATSU  8HP    PINION 
3B2-64571- TOHATSU  8HP  Forward Gear
3B2-64030- TOHATSU  8HP  REVERSE Gear
350-64571- TOHATSU  18HP    PINION 
350-64571- TOHATSU  18HP  Ahead Equipment
350-64030-/362-64030- TOHATSU  18HP  REVERSE Equipment
57311-93901 SUZUKI 15HP    PINION 939
57510-93902 SUZUKI 15HP  Ahead GEAR939
57521-93902 SUZUKI 15HP  REVERSE GEAR939
57311-96301 SUZUKI 25HP PINION
57510-96302 SUZUKI 25HP Ahead Equipment
57521-96302 SUZUKI 25HP REVERSE Gear
57311-94401 SUZUKI 40HP    PINION 
57510-94402 SUZUKI 40HP  Ahead Gear
57521-94402 SUZUKI 40HP  REVERSE Gear
61N-45551-00 YAMAHA  30HP PINION
61N-45560-00 YAMAHA  30HP Ahead Gear
61N-45571-00 YAMAHA  30HP REVERSE Equipment
66T-45551-00 YAMAHA  40HP PINION
66T-45560-01 YAMAHA  40HP Forward Gear
66T-45571-00 YAMAHA  40HP REVERSE Gear
6F5-45551-00 YAMAHA  40HP PINION
6F5-45560-00 YAMAHA  40HP Ahead Equipment
6F5-45571-00 YAMAHA  40HP REVERSE Gear
679-45551-00 YAMAHA  40HP PINION
679-45560-01 YAMAHA  40HP Ahead Equipment
679-45570-00 YAMAHA  40HP REVERSE Gear
697-45551-00 YAMAHA  48HP PINION
697-45560-00 YAMAHA  48HP Ahead Equipment
697-45571-00 YAMAHA  48HP REVERSE Gear
688-45551-00 YAMAHA  75HP PINION
688-45560-00 YAMAHA  75HP Ahead Equipment
688-45571-00 YAMAHA  75HP REVERSE Gear
6E5-45551-00 YAMAHA  115HP PINION
6E5-45560-00 YAMAHA  115HP Forward Gear
6E5-45571-00 YAMAHA  115HP REVERSE Gear
6G5-45551-00 YAMAHA  200HP PINION
6G5-45560-00 YAMAHA  200HP Forward Equipment
6G5-45571-00 YAMAHA  200HP REVERSE Equipment
346-64571- TOHATSU  25HP    PINION 
346-64571- TOHATSU  25HP  Ahead Gear
346-64030- TOHATSU  25HP  REVERSE Gear
57311-99J10 SUZUKI 15HP    PINION 
6E0-45551-00 YAMAHA  5HP    PINION 
6N0-G5551-00 YAMAHA  8HP    PINION 
57521-99J10 SUZUKI 15HP  Forward Gear
6N0-G5560-00 YAMAHA  8HP  Ahead Equipment
6E0-45560-00 YAMAHA  5HP  Ahead Equipment
626-45551-00 626    PINION 
626-45560-01 626  Ahead Equipment
650-45570-00 650  REVERSE Gear
647-45570-01 YAMAHA  9HP  REVERSE Gear
647-45560-00 YAMAHA  9HP  Forward Gear
647-45551-00 YAMAHA  9HP    PINION 
  SUZUKI 175HP    PINION 
  SUZUKI 175HP  Ahead Gear
  SUZUKI 175HP  REVERSE Gear
6J8-45560-00 YAMAHA  30HP  Forward Gear
6H4-45560-00 6H4  Forward Gear
6H4-45551-00 6H4    PINION 
68V-45551-00 90-115HP    PINION 
68V-45571-00 ninety-115HP  REVERSE Equipment
68V-45560-00 ninety-115HP  Ahead Gear
67F-45571-00 67F  REVERSE Gear
6D9-45560-ten 75-90HP  Ahead Gear
6D9-45551-10 75-90HP    PINION 
6J8-45551-00 YAMAHA  30HP    PINION 

 
We are skilled outboard engine parts supplier,we can supply variousparts:gears,shafts,gaskets,carburetors,propellor,bearing,and so on. 

 

YAMAHA, SUZUKI, TOHATSU/NISSAN, HONDA, and many others outboard makes. 

Our maritime outboard elements includes crankshaft, crank pin, cylinder liner, diaphragm, fuel filter, mount damper, shaft, spacer, spark plugs, starter, equipment, pinion, gasket, gasket kit, impeller, important woodruff, propeller, piston, principal pump, clutch puppy ,carburetor restore kit, bracket, higher casing, reduce casing, repair package, washer, bolt ,pin, spring, float, tube, clamp, bearing, seal, o-ring, cartridge, tab-trim , bushing, cable, connector, coil ignition, CDI device, water pump, collar, condenser, and many others. 
 

US $1
/ Piece
|
1 Piece

(Min. Order)

###

Application: Boat
Standard: ISO
Customized: Non-Customized
Surface Treatment: Polished
Material: Steel
Type: Gear

###

Samples:
US$ 1/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Outboard model brand HONDA, SUZUKI, YAMAHA, MERCURY
Outboard part model 9.9HP,15HP,20HP,25HP,30HP,40HP,48HP,60HP,70HP,80HP,100HP

###

6E7/63V-45551-00 YAMAHA 15HP  PINION
6E7-45560-00 YAMAHA 15HP FORWARD GEAR
6E7-45571-00 YAMAHA 15HP REVERSE GEAR
3B2-64020-0 TOHATSU  8HP    PINION 
3B2-64010-0 TOHATSU  8HP  FORWARD GEAR
3B2-64030-0 TOHATSU  8HP  REVERSE GEAR
350-64020-0 TOHATSU  18HP    PINION 
350-64010-0 TOHATSU  18HP  FORWARD GEAR
350-64030-0/362-64030-0 TOHATSU  18HP  REVERSE GEAR
57311-93901 SUZUKI 15HP    PINION 939
57510-93902 SUZUKI 15HP  FORWARD GEAR939
57521-93902 SUZUKI 15HP  REVERSE GEAR939
57311-96301 SUZUKI 25HP PINION
57510-96302 SUZUKI 25HP FORWARD GEAR
57521-96302 SUZUKI 25HP REVERSE GEAR
57311-94401 SUZUKI 40HP    PINION 
57510-94402 SUZUKI 40HP  FORWARD GEAR
57521-94402 SUZUKI 40HP  REVERSE GEAR
61N-45551-00 YAMAHA  30HP PINION
61N-45560-00 YAMAHA  30HP FORWARD GEAR
61N-45571-00 YAMAHA  30HP REVERSE GEAR
66T-45551-00 YAMAHA  40HP PINION
66T-45560-01 YAMAHA  40HP FORWARD GEAR
66T-45571-00 YAMAHA  40HP REVERSE GEAR
6F5-45551-00 YAMAHA  40HP PINION
6F5-45560-00 YAMAHA  40HP FORWARD GEAR
6F5-45571-00 YAMAHA  40HP REVERSE GEAR
679-45551-00 YAMAHA  40HP PINION
679-45560-01 YAMAHA  40HP FORWARD GEAR
679-45570-00 YAMAHA  40HP REVERSE GEAR
697-45551-00 YAMAHA  48HP PINION
697-45560-00 YAMAHA  48HP FORWARD GEAR
697-45571-00 YAMAHA  48HP REVERSE GEAR
688-45551-00 YAMAHA  75HP PINION
688-45560-00 YAMAHA  75HP FORWARD GEAR
688-45571-00 YAMAHA  75HP REVERSE GEAR
6E5-45551-00 YAMAHA  115HP PINION
6E5-45560-00 YAMAHA  115HP FORWARD GEAR
6E5-45571-00 YAMAHA  115HP REVERSE GEAR
6G5-45551-00 YAMAHA  200HP PINION
6G5-45560-00 YAMAHA  200HP FORWARD GEAR
6G5-45571-00 YAMAHA  200HP REVERSE GEAR
346-64020-0 TOHATSU  25HP    PINION 
346-64010-0 TOHATSU  25HP  FORWARD GEAR
346-64030-0 TOHATSU  25HP  REVERSE GEAR
57311-99J10 SUZUKI 15HP    PINION 
6E0-45551-00 YAMAHA  5HP    PINION 
6N0-G5551-00 YAMAHA  8HP    PINION 
57521-99J10 SUZUKI 15HP  FORWARD GEAR
6N0-G5560-00 YAMAHA  8HP  FORWARD GEAR
6E0-45560-00 YAMAHA  5HP  FORWARD GEAR
626-45551-00 626    PINION 
626-45560-01 626  FORWARD GEAR
650-45570-00 650  REVERSE GEAR
647-45570-01 YAMAHA  9HP  REVERSE GEAR
647-45560-00 YAMAHA  9HP  FORWARD GEAR
647-45551-00 YAMAHA  9HP    PINION 
  SUZUKI 175HP    PINION 
  SUZUKI 175HP  FORWARD GEAR
  SUZUKI 175HP  REVERSE GEAR
6J8-45560-00 YAMAHA  30HP  FORWARD GEAR
6H4-45560-00 6H4  FORWARD GEAR
6H4-45551-00 6H4    PINION 
68V-45551-00 90-115HP    PINION 
68V-45571-00 90-115HP  REVERSE GEAR
68V-45560-00 90-115HP  FORWARD GEAR
67F-45571-00 67F  REVERSE GEAR
6D9-45560-10 75-90HP  FORWARD GEAR
6D9-45551-10 75-90HP    PINION 
6J8-45551-00 YAMAHA  30HP    PINION 
US $1
/ Piece
|
1 Piece

(Min. Order)

###

Application: Boat
Standard: ISO
Customized: Non-Customized
Surface Treatment: Polished
Material: Steel
Type: Gear

###

Samples:
US$ 1/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Outboard model brand HONDA, SUZUKI, YAMAHA, MERCURY
Outboard part model 9.9HP,15HP,20HP,25HP,30HP,40HP,48HP,60HP,70HP,80HP,100HP

###

6E7/63V-45551-00 YAMAHA 15HP  PINION
6E7-45560-00 YAMAHA 15HP FORWARD GEAR
6E7-45571-00 YAMAHA 15HP REVERSE GEAR
3B2-64020-0 TOHATSU  8HP    PINION 
3B2-64010-0 TOHATSU  8HP  FORWARD GEAR
3B2-64030-0 TOHATSU  8HP  REVERSE GEAR
350-64020-0 TOHATSU  18HP    PINION 
350-64010-0 TOHATSU  18HP  FORWARD GEAR
350-64030-0/362-64030-0 TOHATSU  18HP  REVERSE GEAR
57311-93901 SUZUKI 15HP    PINION 939
57510-93902 SUZUKI 15HP  FORWARD GEAR939
57521-93902 SUZUKI 15HP  REVERSE GEAR939
57311-96301 SUZUKI 25HP PINION
57510-96302 SUZUKI 25HP FORWARD GEAR
57521-96302 SUZUKI 25HP REVERSE GEAR
57311-94401 SUZUKI 40HP    PINION 
57510-94402 SUZUKI 40HP  FORWARD GEAR
57521-94402 SUZUKI 40HP  REVERSE GEAR
61N-45551-00 YAMAHA  30HP PINION
61N-45560-00 YAMAHA  30HP FORWARD GEAR
61N-45571-00 YAMAHA  30HP REVERSE GEAR
66T-45551-00 YAMAHA  40HP PINION
66T-45560-01 YAMAHA  40HP FORWARD GEAR
66T-45571-00 YAMAHA  40HP REVERSE GEAR
6F5-45551-00 YAMAHA  40HP PINION
6F5-45560-00 YAMAHA  40HP FORWARD GEAR
6F5-45571-00 YAMAHA  40HP REVERSE GEAR
679-45551-00 YAMAHA  40HP PINION
679-45560-01 YAMAHA  40HP FORWARD GEAR
679-45570-00 YAMAHA  40HP REVERSE GEAR
697-45551-00 YAMAHA  48HP PINION
697-45560-00 YAMAHA  48HP FORWARD GEAR
697-45571-00 YAMAHA  48HP REVERSE GEAR
688-45551-00 YAMAHA  75HP PINION
688-45560-00 YAMAHA  75HP FORWARD GEAR
688-45571-00 YAMAHA  75HP REVERSE GEAR
6E5-45551-00 YAMAHA  115HP PINION
6E5-45560-00 YAMAHA  115HP FORWARD GEAR
6E5-45571-00 YAMAHA  115HP REVERSE GEAR
6G5-45551-00 YAMAHA  200HP PINION
6G5-45560-00 YAMAHA  200HP FORWARD GEAR
6G5-45571-00 YAMAHA  200HP REVERSE GEAR
346-64020-0 TOHATSU  25HP    PINION 
346-64010-0 TOHATSU  25HP  FORWARD GEAR
346-64030-0 TOHATSU  25HP  REVERSE GEAR
57311-99J10 SUZUKI 15HP    PINION 
6E0-45551-00 YAMAHA  5HP    PINION 
6N0-G5551-00 YAMAHA  8HP    PINION 
57521-99J10 SUZUKI 15HP  FORWARD GEAR
6N0-G5560-00 YAMAHA  8HP  FORWARD GEAR
6E0-45560-00 YAMAHA  5HP  FORWARD GEAR
626-45551-00 626    PINION 
626-45560-01 626  FORWARD GEAR
650-45570-00 650  REVERSE GEAR
647-45570-01 YAMAHA  9HP  REVERSE GEAR
647-45560-00 YAMAHA  9HP  FORWARD GEAR
647-45551-00 YAMAHA  9HP    PINION 
  SUZUKI 175HP    PINION 
  SUZUKI 175HP  FORWARD GEAR
  SUZUKI 175HP  REVERSE GEAR
6J8-45560-00 YAMAHA  30HP  FORWARD GEAR
6H4-45560-00 6H4  FORWARD GEAR
6H4-45551-00 6H4    PINION 
68V-45551-00 90-115HP    PINION 
68V-45571-00 90-115HP  REVERSE GEAR
68V-45560-00 90-115HP  FORWARD GEAR
67F-45571-00 67F  REVERSE GEAR
6D9-45560-10 75-90HP  FORWARD GEAR
6D9-45551-10 75-90HP    PINION 
6J8-45551-00 YAMAHA  30HP    PINION 

How to Design a Forging Spur Gear

Before you start designing your own spur gear, you need to understand its main components. Among them are Forging, Keyway, Spline, Set screw and other types. Understanding the differences between these types of spur gears is essential for making an informed decision. To learn more, keep reading. Also, don’t hesitate to contact me for assistance! Listed below are some helpful tips and tricks to design a spur gear. Hopefully, they will help you design the spur gear of your dreams.
Gear

Forging spur gears

Forging spur gears is one of the most important processes of automotive transmission components. The manufacturing process is complex and involves several steps, such as blank spheroidizing, hot forging, annealing, phosphating, and saponification. The material used for spur gears is typically 20CrMnTi. The process is completed by applying a continuous through extrusion forming method with dies designed for the sizing band length L and Splitting angle thickness T.
The process of forging spur gears can also use polyacetal (POM), a strong plastic commonly used for the manufacture of gears. This material is easy to mold and shape, and after hardening, it is extremely stiff and abrasion resistant. A number of metals and alloys are used for spur gears, including forged steel, stainless steel, and aluminum. Listed below are the different types of materials used in gear manufacturing and their advantages and disadvantages.
A spur gear’s tooth size is measured in modules, or m. Each number represents the number of teeth in the gear. As the number of teeth increases, so does its size. In general, the higher the number of teeth, the larger the module is. A high module gear has a large pressure angle. It’s also important to remember that spur gears must have the same module as the gears they are used to drive.

Set screw spur gears

A modern industry cannot function without set screw spur gears. These gears are highly efficient and are widely used in a variety of applications. Their design involves the calculation of speed and torque, which are both critical factors. The MEP model, for instance, considers the changing rigidity of a tooth pair along its path. The results are used to determine the type of spur gear required. Listed below are some tips for choosing a spur gear:
Type A. This type of gear does not have a hub. The gear itself is flat with a small hole in the middle. Set screw gears are most commonly used for lightweight applications without loads. The metal thickness can range from 0.25 mm to 3 mm. Set screw gears are also used for large machines that need to be strong and durable. This article provides an introduction to the different types of spur gears and how they differ from one another.
Pin Hub. Pin hub spur gears use a set screw to secure the pin. These gears are often connected to a shaft by dowel, spring, or roll pins. The pin is drilled to the precise diameter to fit inside the gear, so that it does not come loose. Pin hub spur gears have high tolerances, as the hole is not large enough to completely grip the shaft. This type of gear is generally the most expensive of the three.
Gear

Keyway spur gears

In today’s modern industry, spur gear transmissions are widely used to transfer power. These types of transmissions provide excellent efficiency but can be susceptible to power losses. These losses must be estimated during the design process. A key component of this analysis is the calculation of the contact area (2b) of the gear pair. However, this value is not necessarily applicable to every spur gear. Here are some examples of how to calculate this area. (See Figure 2)
Spur gears are characterized by having teeth parallel to the shafts and axis, and a pitch line velocity of up to 25 m/s is considered high. In addition, they are more efficient than helical gears of the same size. Unlike helical gears, spur gears are generally considered positive gears. They are often used for applications in which noise control is not an issue. The symmetry of the spur gear makes them especially suitable for applications where a constant speed is required.
Besides using a helical spur gear for the transmission, the gear can also have a standard tooth shape. Unlike helical gears, spur gears with an involute tooth form have thick roots, which prevents wear from the teeth. These gears are easily made with conventional production tools. The involute shape is an ideal choice for small-scale production and is one of the most popular types of spur gears.

Spline spur gears

When considering the types of spur gears that are used, it’s important to note the differences between the two. A spur gear, also called an involute gear, generates torque and regulates speed. It’s most common in car engines, but is also used in everyday appliances. However, one of the most significant drawbacks of spur gears is their noise. Because spur gears mesh only one tooth at a time, they create a high amount of stress and noise, making them unsuitable for everyday use.
The contact stress distribution chart represents the flank area of each gear tooth and the distance in both the axial and profile direction. A high contact area is located toward the center of the gear, which is caused by the micro-geometry of the gear. A positive l value indicates that there is no misalignment of the spline teeth on the interface with the helix hand. The opposite is true for negative l values.
Using an upper bound technique, Abdul and Dean studied the forging of spur gear forms. They assumed that the tooth profile would be a straight line. They also examined the non-dimensional forging pressure of a spline. Spline spur gears are commonly used in motors, gearboxes, and drills. The strength of spur gears and splines is primarily dependent on their radii and tooth diameter.
SUS303 and SUS304 stainless steel spur gears

Stainless steel spur gears are manufactured using different techniques, which depend on the material and the application. The most common process used in manufacturing them is cutting. Other processes involve rolling, casting, and forging. In addition, plastic spur gears are produced by injection molding, depending on the quantity of production required. SUS303 and SUS304 stainless steel spur gears can be made using a variety of materials, including structural carbon steel S45C, gray cast iron FC200, nonferrous metal C3604, engineering plastic MC901, and stainless steel.
The differences between 304 and 303 stainless steel spur gears lie in their composition. The two types of stainless steel share a common design, but have varying chemical compositions. China and Japan use the letters SUS304 and SUS303, which refer to their varying degrees of composition. As with most types of stainless steel, the two different grades are made to be used in industrial applications, such as planetary gears and spur gears.
Gear

Stainless steel spur gears

There are several things to look for in a stainless steel spur gear, including the diametral pitch, the number of teeth per unit diameter, and the angular velocity of the teeth. All of these aspects are critical to the performance of a spur gear, and the proper dimensional measurements are essential to the design and functionality of a spur gear. Those in the industry should be familiar with the terms used to describe spur gear parts, both to ensure clarity in production and in purchase orders.
A spur gear is a type of precision cylindrical gear with parallel teeth arranged in a rim. It is used in various applications, such as outboard motors, winches, construction equipment, lawn and garden equipment, turbine drives, pumps, centrifuges, and a variety of other machines. A spur gear is typically made from stainless steel and has a high level of durability. It is the most commonly used type of gear.
Stainless steel spur gears can come in many different shapes and sizes. Stainless steel spur gears are generally made of SUS304 or SUS303 stainless steel, which are used for their higher machinability. These gears are then heat-treated with nitriding or tooth surface induction. Unlike conventional gears, which need tooth grinding after heat-treating, stainless steel spur gears have a low wear rate and high machinability.

China 8HP YAMAHA Outboard Forward Gear 647-45560-00, Pinion 647-45551-00, Reverse Gear 647-45570-00     worm gear motorChina 8HP YAMAHA Outboard Forward Gear 647-45560-00, Pinion 647-45551-00, Reverse Gear 647-45570-00     worm gear motor
editor by czh 2023-01-17